Skip to content

More

Understanding types.MethodType in Python

What is types.MethodType?

types.MethodType is a function from Python’s built-in types module. It allows you to bind a function to an instance as a method, so that the instance is automatically passed as self when you call the method.

Signature:

types.MethodType(function, instance)


Why use types.MethodType?

Suppose you want to add a new method to an instance at runtime. If you assign a function directly, it won’t behave like a regular method—self won’t be passed automatically.

Example: Assigning Directly (Does NOT work)

class MyClass:
    def __init__(self, value):
        self.value = value

def custom_method(self, x):
    return self.value + x

obj = MyClass(10)
obj.new_method = custom_method

# This will raise a TypeError!
obj.new_method(5)
Error:
TypeError: custom_method() missing 1 required positional argument: 'self'


Example: Using types.MethodType (Works!)

import types

class MyClass:
    def __init__(self, value):
        self.value = value

def custom_method(self, x):
    return self.value + x

obj = MyClass(10)
obj.new_method = types.MethodType(custom_method, obj)

print(obj.new_method(5))  # Output: 15

When Should You Use This?

  • Dynamic behavior: When you need to add instance-specific methods at runtime.
  • Plugin/extension systems: When functionality is added dynamically.
  • Monkey-patching: For altering behavior during testing or debugging.

For static methods or class-wide additions, define methods directly in the class, use class decorators, or metaclasses.


TL;DR

  • Direct assignment: Does NOT bind self.
  • types.MethodType: Binds the function as a proper method.

Tip:
Experiment in a Python REPL to see the difference in behavior!

If you want a snippet for using this with lambdas, functools, or more advanced metaprogramming, just ask!

Classic Python Closure Bug: Late Binding When Attaching Methods

❌ Buggy Example: Late Binding in Loop

import types

tools = []

class DummyTool:
    def __init__(self, name):
        self.name = name
        self._arun = lambda **kwargs: f"{self.name} original: {kwargs}"

# Create two tools
for n in ("search", "fetch_content"):
    tools.append(DummyTool(n))

def patch_all_tools_arun_buggy(tools):
    for tool in tools:
        original_arun = tool._arun
        async def smart_adapter(self, *args, **kwargs):
            # Always uses the last value of original_arun!
            return await original_arun(**kwargs)
        tool._arun = types.MethodType(smart_adapter, tool)
    return tools

patch_all_tools_arun_buggy(tools)
# Now both tools' _arun will point to the last original_arun (fetch_content)

Result:
Calling tools[0]._arun({}) and tools[1]._arun({}) will both use the fetch_content logic.
This is because original_arun is late-bound in the closure!


✅ Corrected Example: Capture with Default Argument

import types

def patch_all_tools_arun_fixed(tools):
    for tool in tools:
        original_arun = tool._arun
        async def smart_adapter(self, *args, original_func=original_arun, **kwargs):
            return await original_func(**kwargs)
        tool._arun = types.MethodType(smart_adapter, tool)
    return tools

# Now each tool's _arun uses the correct original function!
patch_all_tools_arun_fixed(tools)
Result:
Each tool's _arun works as expected, calling its own original method.


🧠 Learning: Why This Happens

  • Late binding in closures:
    Functions defined inside a loop "capture" variables by reference, not by value.
    By the time the function is called, the loop variable might have changed.
  • Fix:
    Use a default argument (original_func=original_arun) to capture the current value for each iteration.

Tip: This pattern is crucial to remember for dynamic method patching, decorators in loops, and any place where you use closures with loop variables.